What your Microwave Oven has in common with your WIFI

Radio Waves

What does your microwave oven have in common with your WIFI connection?

The short answer is radio waves.

A microwave oven operates by bombarding the food with high frequency radio waves.

A device called a Magnetron bombards focused electromagnetic waves at the food inside the microwave Oven.

This works by heating the molecules inside the food, which are tiny in size. The food molecules are vibrated by the radio signals produced by the magnetron, which causes them to heat up.

It is actually electromagnetic radiation that is cooking your food.

This radiation is dangerous, which is why there is a grid with tiny holes in the microwave door.

The higher the radio frequency in the electromagnetic spectrum  the shorter is the ‘wavelength’.

Microwave ovens operate at a radio frequency of 2.45 GigaHertz (Ghz).

WIFI also operates around 2.45 Ghz, hence the connection between the two, in this articles title.

As previously stated, microwave ovens have a grid incorporated into the door, which contains small holes.

These holes prevent the electromagnetic radiation produced by the Magenetron, from escaping out of the microwave cooking area.

The metal grid with holes in, is important because being cooked is hazardous to human health!

So is my WIFI also dangerous?

Whilst research has been carried out, and some people claim it is, you will not be cooked!

The reason for this is ‘RF Power’ level.

When RF (Radio Frequency) engineers work near very high power radio transmitters they use RF radiation monitoring devices, and appropriate protective PPE.

Whereas you will not get RF Burns’ using a handheld walkie talkie, or mobile (cell) phone.

Its down to RF Power levels being emitted from the antenna system.

Whilst RF frequency also is a factor, lets ignore that for the purposes of this blog article.

WIFI signals are low power radio signals, at a low RF Power. Hence you don’t get cooked, standing next the the wireless router.

Hopefully now you understand the answer to what does your microwave oven have in common with your WIFI connection?

If not, ask me a question, so that I can clarify and expand your knowledge.

(c) 2019 Craig Miles Craigmiles.co.uk

Why not hire me!





Preventive Maintenance For Electric Motors

Preventative Maintenance

Preventive maintenance programmes  are the key to reliable, long-life operation of electric motors.
Whilst AC Induction Motors are particularly reliable in service, almost all electrical equipment requires periodic planned inspection and maintenance. Planned preventative maintenance ensures electrical motors, and starters are kept in good working condition at all times. This is critical for businesses that rely on electric motors. A scheduled routine of motor inspection should be carried out throughout the motor’s life. Periodic motor inspection helps prevent serious damage to motors by locating potential problems early.

Periodic Inspections

Planned electric motor maintenance programmes are designed to help prevent breakdowns, rather than having to repair motors after a breakdown. In industrial operations, unscheduled stoppage of production or long repair shutdowns is expensive, and in marine shipping environments, a potential safety issue. Periodic inspections of motors are therefore necessary to ensure best operational reliability.

Preventive maintenance programmes require detailed checks to be effective. All motors onsite (factory, ship etc) should be given their own individual identification (ID) number and have a record log. The record log is usually computerised these days. The motor records kept should identify the motor, brand, inspection dates and descriptions of any repairs previously carried out. By record keeping, the cause of any previous breakdowns can help indicate the cause of any future problems that might occur.

All preventative maintenance programmes should refer to the equipment manufacturer’s technical documentation prior to performing equipment checks.

There are simple routine maintenance checks that can be applied to three phase induction motors, which help ensure a long service life to a motor. 

The Simple checks that can be carried out, include a review of the service history, noise and vibration inspections. Previous noise issues could for example be due to motor single phasing. Previous vibration may have been due to worn bearings, which allow the Stator to turn. Other checks include visual inspections (damage and burning), windings tests (insulation resistance & continuity), brush and commutator maintenance (dc motors) and bearings and lubrication.

Inspection frequency and the degree of inspection detail may vary depending on such factors as the critical nature of the motor, it’s function and the motor’s operating environment. An inspection schedule, therefore, must be flexible and adapted to the needs of each industrial or marine environment.

(c) Craig Miles 2019.  craigmiles.co.uk

For bespoke electrical training with Craig, call  +44 (01522) 740818

Deciding on Electric Vehicle Conversion Performance

Performance of the Electric Vehicle conversion is my next consideration in the electric Alfa GTV project.

The standard 2 litre ‘twin spark’ engine in the factory standard Alfa GTV, propels the car to sixty miles and hour in just over 8 seconds.

Increasing performance is one of my objectives for the project, in addition to making the car more environmentally friendly.

I have decided that I want to increase the performance of the car, without going to extremes.

The fastest electric Tesla car is capable of reaching 60 miles an hour in just over 2 seconds!

I don’t want that kind of performance for two main reasons.

Firstly is cost. The more performance you wish an electric car conversion to have, the more it will generally cost (unless you can obtain secondhand parts cheaply).

Even if I was given a large Tesla electric motor, then I have to make it fit.

The Alfa Romeo GTV has a sophisticated multi link rear suspension system, which takes up a lot of room at the back of the car.

The Alfa Romeo (916) GTV is front wheel drive.

Therefore if you wished to mount a powerful electric motor at the back, and create a rear wheel drive car, it would require serious suspension modifications.

Serious suspension modifications are expensive!

I have therefore decided to go for an electric car conversion, that keeps the original suspension, engine and gearbox layout.

Keeping the original component layout will help maintain the weight distribution, and therefore the cars handling.

Of course keeping the original engine layout does not mean keeping the original engine.

The original petrol engine will be replaced with an electric motor.

Secondly, is the cars characteristics, which I wish to maintain, such as feel and handling.

To maintain the cars handling, careful consideration is being made of what weight is being removed and added.

The aim is to end up with an electric conversion, that has similar weight balance to the original specification.

An electric motor generally weighs less than an internal combustion engine.

But an electric conversion has the added weight of much heavier batteries.

You also lose weight by removing no longer needed items, such as the exhaust system.

The Alfa Romeo GTV exhaust system is heavy, and can contain up to four catalytic converters in some model versions.

I am going to weigh components as they are removed and added.

The aim of weighing the components, is to replicate the original weight distribution of the GTV.

One of the factors in performance is the cars weight, so if the car can be made slightly lighter, then that will help with acceleration.

A useful calculator for working out performance is on this website .

The website link above lets you enter the motor power in KW, the weight of the car, drive type (FWD or RWD) and transmission type.

It then calculates the 0-60 MPH acceleration time.

Of course wind resistance will be a factor, and a tall square vehicle will have a higher ‘drag coefficient’ than a low sports car.

My objective for the electric Alfa GTV project, is a 0-60 of six seconds.

This is about 2.5 seconds than the original petrol engine could produce.

According to the website, I will require about 175 KW power at the flywheel.

Next: Electric Motor Choices



Railway Global System for Mobile Communications GSM-R

Railway Global System for Mobile Communications GSM-R

The railway Global System for Mobile Communications is also known as GSM-R & ‘GSM-Railway’.
GSM-R Global System for Mobile Communications) is an international standard, covering railway communications.
It is a sub-system of the European Rail Traffic Management System, or ERTMS .
ERTMS is used for communication between trains and the railway control centres.
The ERTMS system is based on the EIRENE – MORANE standards specifications.
The EIRENE – MORANE specfications guarantee that the system will operate, at train speeds of up to 310 mph / 500 kph, with zero communication loss.
Communication Security
GSM-R offers secure voice and data communication amongst railway staff.
Users include train drivers, engineers, station controllers etc.
Communication security is important, both for commercial and security reasons.

Communication Hardware
Components of a typical GSM-R include the base station, mobile units installed in trains, and handheld units.
Antenna masts, connected to the base station are installed close to the railway track.
Tunnels present a communication challenge, due to blocking and attenuation of the RF signals.
The solution used, is to either use a directional ‘yagi’ antenna, directed through the tunnel entrance, or to use a ‘leaky feeder’ type antenna.
A Yagi antenna when used as a transmit antenna, directs most of the Rf power in one direction, rather than in all directions.
The Yagi antenna works similarly, when operating as a receive antenna, in that it receives most of the signal from the direction it is pointing in. A tv aerial on a house roof is a common example of a receive Yagi.
The other solution for tunnels, is the ‘leaky feeder’ antenna.
The leaky feeder is like a long piece of coaxial cable, which is designed to emit & receive RF (Radio Frequency) signals along its length.
This allows communications to take place in tunnels and underground stations.
The Leaky Feeder antenna is used in underground stations, where radio communications are required.
The advantage compared with the Yagi antenna, in such locations is that leaky feeders can be positioned round tunnel bends.
As Yagi antennas operate on frequencies that provide ‘line of sight’ signal transmission, bends will affect the signal path, attenuating them at best, blocking them at worst.
The spacing distance on the surface between the base stations, is 4.3 – 9.3 miles (7-15 km).
The system is built with high levels of reliability and redundancy built in, and if communication is lost, the train will stop.

The GSM-R specification standard forms part of the European Rail Traffic Management System, or ERTMS.
The ERTMS is comprosed of the following parts:
European Train Control System (ETCS)
Global System for Mobile Communications – Railway (GSM-R)
European Traffic Management Layer (ETML)
European Operating Rules (EOR)
Operating frequency band

GSM-R uses similar frequencies to the public mobile phone (cell phone) servcice, in most regions, namely around 900Mhz (E-GSM) & also at 1800 Mhz (DCS 1800).
The exact frequency used by Railway operators, is dictated by national and regional regulation bodies, but the 900 Mhz & 1800 Mhz bands are used worldwide.

Induction Motor Servicing Tips For Ships & Factories

Induction Motor Servicing.

Induction motors are used widely in factories and on ships.

They are very reliable machines, but faults can develop over time.

That is why you need Induction motor servicing to be carried out.

Potential faults include burnt out Stator windings, worn bearings, and water damage which causes low insulation resistance.

This article covers tips on Induction motor servicing.

Safety & Isolation of supply of induction motors.

Correct electricity supply isolation procedures are critical for safety.

Taking a casual approach to electrical supply isolation can prove fatal.

Three phase Induction motors, typically operate in factories at around 400 Volts AC (Alternating Current).

Marine installations typically operate at an even higher 440 Volt Alternating Current (440 VAC).

It is important that no one works on a piece of three-phase machinery, such as an Induction motor unless you are qualified to do so.

On board ship, proper authorisation, such as a valid ‘permit to work’, signed off by a ships chief engineer, should be in place before carrying out any Induction Motor servicing.

On land seek authorisation from the responsible senior managers, with appropriate responsibilities for safety.

For work to be carried out aboard Ships, permission from someone such as the Chief Engineer is appropriate.

Once permission has been gained, and the appropriate paperwork issued, only then can work commence.

Certainly in the marine environment, and normally onshore as well, ‘locks and tags’ will be issued.

The lock is to ensure that once an isolator switch has been turned off, no one can switch it back on accidentally.

The ‘tag’ details who has isolated the supply, and is working on that circuit.

Only the person who has been issued with the lock and tag set, can remove them.

Double check that circuit is dead.

Don’t assume that just because you have locked and tagged the appropriate electrical isolator, that you are safe to work on a circuit.

The isolator may be incorrectly labeled, or even worse, you have taken someone else’s word for it.

Before you stick your fingers in, and potentially kill yourself, you need to use an appropriate device to check that the circuit is safe to work on.

Induction motor servicing can be dangerous, if proper procedures are not followed.

There are three possible devices that can be used:

  1. Test Bulb
  2. Multimeter / Voltmeter
  3. Line Tester

Firstly lets look at the test bulb as an option.

A test bulb with appropriate leads and clips attached, can provide indication of a live circuit, but has a flaw.

If the bulb filament breaks, then you could falsely assume that the circuit is safe to work on, with possibly fatal outcomes.

The second option is the Multimeter / Voltmeter which these days will probably be a ‘solid state’ digital type, rather than the older analogue types, which are commonly referred to as ‘AVO’s’ in the UK.

The Multimeter / Voltmeter being ‘solid state’ is more likely to be a bit more reliable than, a filament bulb tester. However it still may be broken, and you would not necessarily know. An example being the test probe wires may be ‘Open Circuit’.

The third option, the ‘Line Tester’, will provide the most reliable indication of whether a circuit is safe. Therefore this is the preferred option.

The reason that a line tester is safer is because it contains four separate Neon bulbs (some modern ones are LED).

The bulbs light up according to how high the voltage is, for example a 400 VAC supply would light not only the 400VAC light, but the lower voltage indicator lights as well.

So imagine that the 400VAC indicator bulb has broken.

The lower voltage indicator bulbs will still light up, for example the 230VAC and 110VAC indicator bulbs.

Therefore the engineer will still have an indication that there is voltage in the circuit, and can investigate further.

Before using a Line Tester you should use a ‘proving unit’. A proving unit is a small hand-held device capable of producing a voltage such as 250 Volts.

The Line tester can thus be tested using the proving unit, prior to testing a real live circuit.

To test the Line Tester the two probes are pushed against the Proving Unit which then produces a voltage.

This will be indicated by an indicator LED lighting up on the proving unit itself.

The Neon or Led indicator lamps of the Line Tester should also light up at the same time, to indicate the voltage being supplied.

Tips when changing bearings on Induction Motors

Bearings on Rotor

The bearings on an induction motor, allow the ‘Rotor’ to rotate inside the ‘Stator’ which surrounds it.

Over time they can become worn, which may increase noise and vibration of the motor.

Bearings are not usually adjustable, so replacement is required.


Importance of  Bearing identification code facing outwards.

When refitting bearings to an induction motor you will notice that the bearing itself has a code written on the one side of it.

This code is the product identification code, and is what you need to quote in order to order the correct replacement bearing.

Once the correct replacement bearing has been obtained, and is ready for fitting, ensure the following.

Firstly, that the bearing identification code is facing away from the Stator, and outwards towards the end of the motor shaft.

This will help you in the future, if you ever have to replace the bearings again.

The reason for this is that you can just remove the end plate of the induction motor, and read the bearing code easily, provided it has been fitted with the code facing outwards.

If the bearing code was facing inwards, then it is harder to read the bearing code, and might mean that the motor shaft has to be disconnected from its mechanical load.

This adds to the motor downtime, and hence has financial and productivity implications.


Ways to remove bearings from induction motor shaft.

The ideal way to remove an old bearing from the induction motor rotor shaft is to use a bearing puller tool.

Removal is then just a matter of fitting, the tool into position, and winding in the screw thread in a clockwise direction.

As this happens, the bearing is slowly pulled up and off the shaft.

If however you don’t have a puller, other methods, such as  using a metal bar to leverage between the bearing and the end of the shaft can be tried.

However this is not the way I recommend, and you do it at you own risk of injury and damage to the motor shaft.


Methods for fitting a new induction motor bearing.

Ideally you will have a hydraulic bench press, that you can use to put massive pressure down onto the bearing to ‘press it’ onto the shaft, in the correct position.

When using such a press, a number of precautions should be observed.

Firstly, ensure that you are fully competent to use the hydraulic press. Even fairly cheap versions are capable of exerting many tons of pressure, which can be dangerous to human health.

Secondly, ensure that the tube or sleeve that you fit over the shaft of the motor is only just wide enough.

The reason for this is that a wide metal tube (or sleeve) put over the motor shaft in order to push against the bearing, can damage it.

This is because too wide a tube will make contact with the plastic middle of the bearing, or the outer metal edge.

Both of these two scenarios are bad, because pressure applied to anywhere but the centre metal part of the bearing, will cause damage.

This damage can result in the replacement bearing being ruined, which defeats the object of replacing it.

Using a hydraulic press is the method that we would recommend, however this option is sometimes not available.

In particular to engineers working at sea in a marine environment, such as a cargo ship.

If you find yourself in this situation, then there are other ways to re-fit a replacement bearing to an induction motor.

One method is to take advantage of the fact that metals contract and expand due to cold and heat.

This method involves carefully wrapping up the Stator part of the induction motor in a polythene bag, and putting it in the freezer overnight.

This will very slightly shrink the size diameter of the bearing shaft.

The second part to the operation involves gently heating up a pan of engine oil, so that it is warm.

Obviously extreme care needs to be taken, so that either a fire is not caused by the oil igniting, or the engineer receiving burns while trying to handle the hot bearing.

Once the bearing is warm, the Stator can be removed from the freezer, and the warm oiled bearing should slip fairly easily onto the shaft.

The oil can then be wiped off the bearing with a non fluffy cloth, and motor reassembly can begin.




Advantages of Electric Car Conversion

What is Electric car Conversion

The advantages of electric car conversion, mean that more people are becoming interested, but what is it.

Electric car conversion is the removal of the petrol or diesel internal combustion engine, and replacement with an electric motor.


Advantages of Electric car Conversion

The advantages of electric car conversion include being less polluting to the environment.

More often electric car conversion will be taking place on older vehicles.

These older vehicles emit more pollution from their exhaust pipe, than the latest models.

Take for example my own 1996 Alfa Romeo GTV Coupe.

It has a two litre petrol engine, that emits 220 grams of CO2 (manufacturers figures when it was new).

This CO2 figure is high by modern standards for a two litre engine.

Another advantage of electric car conversion is the potential for greater reliability.

This is because electric motors have fewer moving parts than a conventional petrol or diesel engine.

If we consider the Induction Motor, which is used in some electric car conversions.

The Induction Motor consists of an outer casing, a Stator, and a Rotor.

The Stator does not move, and the Rotor rotates inside the stator.

Therefore the only moving part in an Induction Motor, is the Rotor.

Disadvantages of Electric car Conversion

Converting a car to electric power is not cheap.

Even the cheapest secondhand electric motors, such as from the Nissan Leaf will cost around £1500 upwards  on ebay.

You also need the control electronics to make it all work.

You also need to consider the actual cost of labour, unless you are doing your own conversion.

But it doesn’t stop there, as you will have costs involved in making the car road legal, etc etc.

The list of parts that have to be changed, will be the subject of  a future blog post.

So why not subscribe, so that you don’t miss out.







Minimalist Living Decision to make my life simpler and happier

Discovering Minimalist Living

Yesterday I came across a fascinating youtube video on minimalist living, and de-cluttering your life.

The woman on the TED talk was explaining how she felt happier by getting rid of all of her items, and moving abroad.

Well that’s a bit extreme for many people, and I am not sure that is what I want to do, but it sparked my curiosity about minimalist living.

What I did next was seek out further youtube videos on minimalist living lifestyles, and those who have embraced it.

I came across a quote from the Victorian designer William Morris. In the quote Morris advised that people should only have objects in their homes, that are either useful or beautiful.

This quote resonates deeply with me, and I wish I had heard it before.

Take a look around your own home, and think in terms of the above advice.

Are you keeping items in your home because it is useful or beautiful.

If it is neither useful or beautiful then why are you keeping it?

Personally I have realised that I have too much stuff, that is neither useful, or beautiful.

Why do we keep stuff, instead of be Minimalist?

As I am new to minimalist living, I have not had a great deal of time to consider this question.

My initial thoughts are that personal items are like comfort blankets, to a nervous child.

The media can often portray the world as a scary place, which it can be.

Perhaps we hoard items as a way of feeling protected and safer.

They say that the human mind is like an iceberg, namely that only a small part (the conscious part) is visible.

What goes on within our unconscious mind is a fascinating subject, but could have an influence on many peoples need for things.

Personally I feel uncomfortable about getting rid of my ‘things’.

Take for instance my cars, of which I have three.

Car one is a comfortable road legal car that I can get to places in.

Car two is an old Italian sports coupe, that is beautiful, but has sat in my garage for over 5 years.

Car three is an old ‘people carrier’ , that is very useful, but not road legal at present.

Car Three

In fact car three has not been on the road for over 1.5 years now.

Car three is kept because it has little value, is (in theory) useful and as a spare car.

At least that is what I tell myself about car three.

Car three is a symbol of the clutter in my life.

As I look around my house, I see so many items that I don’t use, but keep for ‘just in-case’.

Car three is neither useful (its not road legal), nor beautiful (its an original shape Citroen Picasso).

Email Clutter

My minimalist living journey also extends to my digital life.

One aspect of clutter is emails.

If you are anything like me, then you do not act immediately on every email you receive.

Instead we maybe take a quick look at them, and then move onto the next one.

Despite meaning to deal with emails later, they often just get forgotten about.

In my quest for a more minimalist lifestyle, I have carried out an audit of my email accounts.

I currently have four personal email accounts, and four business email accounts, that’s eight in total!




Further Thoughts

This blog post is the start of a personal journey, and will be expanded as my minimalist living journey progresses.

To be continued……

Twitter: @acraigmiles


Further reading about minimalist living on other external websites:

What Is Minimalism?


School for the World is a Great Idea

Why a World School is a Great Idea

Education is a fundamental right in many developed nations, but many world citizens miss out entirely.

A report from the ‘Global Campaign for Education’ (https://www.campaignforeducation.org/en/)  in 2010, claimed that there are 70 Million Children that miss out on an Education.

The lack of an education does not just effect these children economically.

Lack of knowledge, could also potentially make them vulnerable to exploitation, and disease.

What is a World School

My suggestion is that we leverage the Internet to eliminate ‘education poverty’.

My concept of a world school would have regional teachers, connected to remote villages via the Internet, and delivering lessons. A bit like the way they used to deliver education to remote communities in Australia, over two-way radio.

Local Resistance

Of course humans being humans means that there could be some local resistance to educating ever child.

Resistance could potentially come from local leaders, who may themselves not be educated.

Other forms of resistance might come from vested interests, such as those who wish to continue to exploit child workers.

The third issue could be resistance to the education of girls.

In many cultures girls are discriminated against, when it comes to being educated.

To be fair, it was like that the in the UK not that long ago in history. However that certainly doesn’t make it right.

A solution might be the involvement of local government partners (National Governments), to ‘sell the benefits’ of upskilling the countries population.

Benefits such as the potential for higher living standards, would temp resisters to change.


Why Knowledge Can save Lives

Some years ago I read a report on an health campaign in Africa.

The campaign had the aim to reduce unwanted pregnancies among young women, and to help reduce the spread of HIV / Aids (among both Women & Men).

It was realised that the Condoms were being received in damaged condition by those who would benefit from using them.

What was happening was that the Condoms were being ‘stapled’ to a piece of paper, before being handed out.

The staff responsible for distribution had not realised this was a problem, through lack of appropriate education & training.

Technology Challenges & Solutions

The Internet is currently only available to 56.8% of the world population (Source:https://internetworldstats.com/stats.htm).

Whilst this is rapidly increasing, we still have much work to do, to enable a ‘World School’ service.

Companies such as Google have announced that they are planning to provide worldwide Internet coverage in the near future https://www.theverge.com/2014/6/2/5771322/google-reportedly-launching-180-satellites-for-worldwide-internet

To be continued……