Electric Morris Minor

Published by Craig Miles on

This blog post is about my design suggestions for an electric Morris Minor.

There have already been some prototype electric Morris Minor conversions already, which i will discuss.

In addition I have designed alternative ways to successfully convert classic cars such as the Morris Minor.

The Morris Minor is a British car designed by Sir Alec Issigonis, that was launched in 1948.

The Morris Minor originally was produced with an 918cc Side valve Petrol engine, but this was replaced in the early 1950s by an Overhead Valve (OHV) engine.

The OHV engine was improved and its size increased during the remainder of its production. and the later models were 1098cc in cubic capacity size.

The standard Morris Minor had the engine connected to a four speed longitudinal mounted gearbox, attached at the back of the engine.

The gearbox output is connected to a long single drive shaft, which runs underneath the car.

The drive shaft connects the gearbox to the rear axle.

The rear axle incorporates a ‘differential’ which fixes the speed ratio, between the rotational speed of the drive shaft, and the rotational speed of the road wheels.

Therefore as the engine power is transferred via the gearbox and drive shaft, to the rear axle, it is a rear wheel drive car.

Any design for an electric Morris Minor, will probably stick with the rear wheel drive configuration.

The reason for keeping the electric Morris Minor as Rear Wheel Drive, or RHD for short, is engineering design simplicity.

The front suspension on a Morris Minor was advanced for a British car of its time (1948).

The front suspension used torsion bars, as the springs, and featured ‘rack and pinion’ suspension, that is still used in modern cars.

The shock absorbers are different to the type used in modern cars, and are known as ‘lever arm shock absorbers’.

To convert an electric Morris Minor into powering the front wheels, known as front wheel drive, would require major suspension modifications.

This is because the original Morris Minor steering and front suspension system, would need a lot of component changes.

Of course its possible to make a front wheel drive Morris Minor, but more expensive, and also changes the cars handling characteristics.

If however you are hell bent on a front wheel drive electric Morris Minor then get in touch, as I have a design solution.

So let’s decide to stick to the original rear wheel drive layout for our electric Morris Minor.

There are four ways that you could configure the electric motor layout. This also applies to many other classic cars, which share the same basic layout.

Firstly, the original internal combustion engine can be removed, whilst leaving the Morris Minor gearbox, driveshaft and rear axle (Inc differential) in place.

An electric motor is then attached to the original Morris Minor gearbox.

Some electric motor conversions that use this layout configuration, are clutch less in design. The torque & high rev range of many electric motors mean that the car can be driven in the same gear for most of the time.

Other electric car conversion designs still incorporate a conventional clutch.

The advantages of retaining a clutch are better motor speed control, and more importantly more retention of the original Classic Car experience.

A second option for mounting the electric motor in your Morris Minor, would be by removing the gearbox and either mounting the electric motor at the front end of the drive shaft, and directly attached to its front end.

Or alternatively the drive shaft could be removed, and the motor mounted directly to the reap axle differential input shaft.

This second method of attaching the electric motor directly to the rear axle differential connection, has advantages and disadvantages.

The advantage is a saving of weight, by removing the drive shaft which runs underneath the car, from front to back.

Less weight is a good thing for performance of your electric car.

The disadvantage is that it makes it a bit harder to mount, than if you mounted the electric motor at the front end, and retained the driveshaft.

It is harder to mount, because you need to create a mounting cradle which attaches to the rear axle, and supports the weight of the electric motor.

Part 2 of this blog post will be coming soon.